Package 'kinograte'

Title: Kinograte: Netwrok-based multi-omics Integration
Description: Netwrok-based multi-omics integration using a prize-collecting Steiner forest (PCSF) algorithm.
Authors: Khaled Alganem [aut, cre]
Maintainer: Khaled Alganem <[email protected]>
License: MIT + file LICENSE
Version: 0.0.2.9000
Built: 2024-11-20 05:53:14 UTC
Source: https://github.com/CogDisResLab/kinograte

Help Index


Combines standardized scores

Description

This function ranks combines standardized scores from each omic ranked dataset

Usage

combine_scores(df_rna = NULL, df_prot = NULL, df_kin = NULL, tf_kin = NULL)

Arguments

df_rna

dataframe with percentile ranking of RNA features

df_prot

dataframe with percentile ranking of protein features

df_kin

dataframe with percentile ranking of kinase features

tf_kin

dataframe with percentile ranking of transcription factor features

Value

dataframe with combined scores

Examples

TRUE

Integrate omic datasets using PCSF

Description

This function integrates omic datasets using prize-collecting Steiner forest (PCSF) algorithm

Usage

kinograte(
  df,
  ppi_network,
  n = 10,
  w = 10,
  r = 0.1,
  b = 2,
  mu = 0.005,
  cluster = TRUE,
  seed = NULL
)

Arguments

df

combined ranked omic datasets

ppi_network

dataframe of protein-protein interactions

n

An integer value to determine the number of runs with random noise added edge costs. A default value is 10.

w

A numeric value for tuning the number of trees in the output. A default value is 2.

r

A numeric value to determine additional random noise to edge costs. A random noise upto r percent of the edge cost is added to each edge. A default value is 0.1

b

A numeric value for tuning the node prizes. A default value is 1.

mu

A numeric value for a hub penalization. A default value is 0.0005.

cluster

set TRUE to cluster the network

seed

(optional) set seed number

Value

list(network, nodes, edges)


an example of Kinome data

Description

an example of Kinome data

Usage

kinomics_exmaple

Format

A data frame with 234 rows and 2 variables:

hgnc_symbol

Gene Symbols of kinases

score

normlaized score


Network pathway analysis

Description

This function performs pathway enrichment analysis on the intergated network

Usage

network_enrichment(network, ...)

Arguments

network

integrated network

...

arguments passed to PCSF::enrichment_analysis()

Value

df enriched terms


Ranks genes/proteins using a percentile ranking for a selected variable

Description

This function ranks genes or proteins using a percentile ranking for a selected variable (for example, fold change or pvalue)

Usage

percentile_rank(df, symbol, metric, desc = FALSE)

Arguments

df

dataframe that contains genes/proteins to rank (tidy format)

symbol

column name that contains the gene/protein symbols

metric

column name to be used as the metric to rank

desc

boolean, ranking in a descending or ascending order. Default = FALSE

Value

dataframe with percentile ranking

Examples

TRUE

an example of ppi network

Description

an example of ppi network

Usage

ppi_network_example

Format

A data frame with 175205 rows and 3 variables:

head

Protein 1

tail

Protein 2

cost

inverse degree of confidence


an example of proteomics data

Description

an example of proteomics data

Usage

proteomics_exmaple

Format

A data frame with 141 rows and 2 variables:

Gene.Symbol

Gene Symbols

LFC

log2 fold change


an example of RNA differential gene expression data

Description

an example of RNA differential gene expression data

Usage

rnaseq_example

Format

A data frame with 3207 rows and 3 variables:

Gene name

Gene Symbols

LFC

log2 fold change

P_Value

pvalue


Plot the normalized score

Description

This function plots the normalized score. Two options available: static or interactive plot

Usage

score_plot(
  df,
  prec_cutoff = 0.8,
  title = "Score Plot",
  subtitle = "",
  interactive = T
)

Arguments

df

dataframe that contains ranked genes/proteins

prec_cutoff

the percentile cutoff

title

plot title

subtitle

plot subtitle

interactive

boolean, option for an interactive plot. Default = TRUE

Value

dataframe of the top hits


Extracts top hits (genes/proteins) based on the normalized score

Description

This function extracts the top hits (genes/proteins) based on the normalized score which is the percentile rank using an adjustable cutoff

Usage

top_hits(df, prec_cutoff, omic_type)

Arguments

df

dataframe that contains ranked genes/proteins

prec_cutoff

the percentile cutoff

omic_type

name of omic dataset (eg. RNA, Protein, Kinase, ... etc)

Value

dataframe of the top hits

Examples

TRUE

Visualize integrated network

Description

This function visualizes the integrated results with an interactive network

Usage

visualize_network(
  nodes,
  edges,
  cluster_df = NULL,
  layout = "layout_with_fr",
  seed = 123,
  options_by = "group"
)

Arguments

nodes

network nodes

edges

network edges

cluster_df

(optional) network clusters dataframe generated by the kinograte function

layout

layout option from igraph. default = "layout_with_fr". See full list

seed

(optional) set seed

options_by

(optional) set dropdown menu, "group" or "cluster". Set NULL to remove dropdown menu

Value

visNetwork object