Title: | KRSA: Kinome Random Sampling Analyzer |
---|---|
Description: | The goal of this package is to analyze the PamChip data and identify the changes in the active kinome. The package can preprocess the PamChip data output from BioNavigator and use Random Sampling and Permutation Analysis to identify upstream kinases. Additionally, this package provides a set of useful visualizations for the PamChip data. |
Authors: | Ali Sajid Imami [aut, cre] , Khaled Alganem [aut] |
Maintainer: | Ali Sajid Imami <[email protected]> |
License: | MIT + file LICENSE |
Version: | 1.99.42 |
Built: | 2024-11-20 23:27:54 UTC |
Source: | https://github.com/CogDisResLab/KRSA |
A data frame of the known Protein-Protein Interactions based on PhosphositePlus database
data("ballModel_edges")
data("ballModel_edges")
A data frame with 592 rows and 2 variables:
Kinase Family Name Source
Kinase Family Name Target
A data frame of the known Protein-Protein Interactions based on PhosphositePlus database
data("ballModel_nodes")
data("ballModel_nodes")
A data frame with 179 rows and 2 variables:
Kinase Family Name
Number of collapsed kinases under that kinase family, it's not used in package
This function takes in the geneset library name from Enrichr and userListId (id created by enrichr api) sand retruns tidy dataframe of all geneset terms in that library
enrichr_lib_call(lib, userListId)
enrichr_lib_call(lib, userListId)
lib |
geneset library name from Enrichr |
userListId |
id created by the POST enrichr api call |
df tidy dataframe of all geneset terms in that library
Other helper functions:
krsa_ce_output_kinases()
,
krsa_ce_output_peptides()
,
krsa_enrichr()
,
krsa_extractEndPoint()
,
krsa_extractEndPointMaxExp()
,
krsa_get_diff()
,
krsa_get_diff_byChip()
,
krsa_sampling()
,
krsa_show_peptides()
,
krsa_top_hits()
TRUE
TRUE
Takes in a vector of the peptides that are considered "hits" and kinase-substrate and coverage dataframes and returns the Z score table
krsa( peptides, itr = 2000, seed = 123, return_count = F, map_file = KRSA_file, cov_file = chipCov )
krsa( peptides, itr = 2000, seed = 123, return_count = F, map_file = KRSA_file, cov_file = chipCov )
peptides |
a vector of the peptides that are considered "hits" |
itr |
number of iterations for the random sampling (default = 2000) |
seed |
seed number (default = 123) |
return_count |
boolean to return the kinase count matrix |
map_file |
kinase-substrate dataframe |
cov_file |
kinase coverage dataframe |
Z score tibble or list if return_count = TRUE
Other core functions:
krsa_group_diff()
,
krsa_quick_filter()
,
krsa_read()
,
krsa_scaleModel()
TRUE
TRUE
This function takes in a Z score table and produces a kinase ball model
krsa_ball_model(kinase_hits, Ztable, frq, Nsize, Tsize)
krsa_ball_model(kinase_hits, Ztable, frq, Nsize, Tsize)
kinase_hits |
a vector of kinases |
Ztable |
Z score table |
frq |
= cutoff for number of connections with other nodes |
Nsize |
= size of nodes scale |
Tsize |
= size of text scale |
igraph network
Other plots:
krsa_coverage_plot()
,
krsa_curve_plot()
,
krsa_cv_plot()
,
krsa_heatmap()
,
krsa_heatmap_grouped()
,
krsa_histogram_plot()
,
krsa_reverse_krsa_plot()
,
krsa_violin_plot()
,
krsa_violin_plot_grouped()
,
krsa_waterfall()
,
krsa_zscores_plot()
TRUE
TRUE
Takes in the Z score table and output kinase with their scores
krsa_ce_output_kinases(krsa_table, file_name)
krsa_ce_output_kinases(krsa_table, file_name)
krsa_table |
a df of the Z score table |
file_name |
file name and path to save file as txt tab delimited file |
saved txt file to be used in creedenzymatic
Other helper functions:
enrichr_lib_call()
,
krsa_ce_output_peptides()
,
krsa_enrichr()
,
krsa_extractEndPoint()
,
krsa_extractEndPointMaxExp()
,
krsa_get_diff()
,
krsa_get_diff_byChip()
,
krsa_sampling()
,
krsa_show_peptides()
,
krsa_top_hits()
Takes in the Z score table and output kinase with their scores
krsa_ce_output_peptides(peptide_table, metric, file_name)
krsa_ce_output_peptides(peptide_table, metric, file_name)
peptide_table |
a df of the log2 FC scores of peptides |
metric |
which col to use as the score (totalMeanLFC, LFC, ... etc) |
file_name |
file name and path to save file as txt tab delimited file |
saved txt file to be used in creedenzymatic
Other helper functions:
enrichr_lib_call()
,
krsa_ce_output_kinases()
,
krsa_enrichr()
,
krsa_extractEndPoint()
,
krsa_extractEndPointMaxExp()
,
krsa_get_diff()
,
krsa_get_diff_byChip()
,
krsa_sampling()
,
krsa_show_peptides()
,
krsa_top_hits()
This function takes in the chipCov map, Z score table, and chip type to produce a coverage plot (Percentage of total coverage of kinases on chip)
krsa_coverage_plot(chipCov, Ztable, chipType = c("STK", "PTK"))
krsa_coverage_plot(chipCov, Ztable, chipType = c("STK", "PTK"))
chipCov |
df of kinase mapping for either STK or PTK chip |
Ztable |
Z score table |
chipType |
type of chip, either STK or PTK |
ggplot object
Other plots:
krsa_ball_model()
,
krsa_curve_plot()
,
krsa_cv_plot()
,
krsa_heatmap()
,
krsa_heatmap_grouped()
,
krsa_histogram_plot()
,
krsa_reverse_krsa_plot()
,
krsa_violin_plot()
,
krsa_violin_plot_grouped()
,
krsa_waterfall()
,
krsa_zscores_plot()
TRUE
TRUE
A data frame of the built-in KRSA kinase coverage file for PamChip 86402 PTK (v1 mapping)
data("KRSA_coverage_PTK_PamChip_86402_v1")
data("KRSA_coverage_PTK_PamChip_86402_v1")
A data frame with 1278 rows and 2 variables:
Kinase Family Name
Peptides IDs
A data frame of the built-in KRSA kinase coverage file for PamChip 87102 STK (v1 mapping)
data("KRSA_coverage_STK_PamChip_87102_v1")
data("KRSA_coverage_STK_PamChip_87102_v1")
A data frame with 2423 rows and 2 variables:
Kinase Family Name
Peptides IDs
A data frame of the built-in KRSA kinase coverage file for PamChip 87102 STK (v2 mapping)
data("KRSA_coverage_STK_PamChip_87102_v2")
data("KRSA_coverage_STK_PamChip_87102_v2")
A data frame with 2423 rows and 2 variables:
Kinase Family Name
Peptides IDs
This function takes in the PW data (that includes all exposure times), list of peptides, and optional arguments of samples or groups names vector
krsa_curve_plot(data, peptides, byGroup = T, samples = NULL, groups = NULL)
krsa_curve_plot(data, peptides, byGroup = T, samples = NULL, groups = NULL)
data |
PW data (that includes all exposure times) |
peptides |
a vector of peptides to plot |
byGroup |
fit lines by group |
samples |
(optional) sample names |
groups |
(optional) group names |
ggplot object
Other plots:
krsa_ball_model()
,
krsa_coverage_plot()
,
krsa_cv_plot()
,
krsa_heatmap()
,
krsa_heatmap_grouped()
,
krsa_histogram_plot()
,
krsa_reverse_krsa_plot()
,
krsa_violin_plot()
,
krsa_violin_plot_grouped()
,
krsa_waterfall()
,
krsa_zscores_plot()
TRUE
TRUE
This function takes in the modeled pw data, list of peptides, and sample names (optional)
krsa_cv_plot(data, peptides, samples = NULL)
krsa_cv_plot(data, peptides, samples = NULL)
data |
krsa modeled pw data (scaled) |
peptides |
peptide list |
samples |
sample names |
ggplot object
Other plots:
krsa_ball_model()
,
krsa_coverage_plot()
,
krsa_curve_plot()
,
krsa_heatmap()
,
krsa_heatmap_grouped()
,
krsa_histogram_plot()
,
krsa_reverse_krsa_plot()
,
krsa_violin_plot()
,
krsa_violin_plot_grouped()
,
krsa_waterfall()
,
krsa_zscores_plot()
TRUE
TRUE
This function takes in a list of PamChip peptide IDs or genes and geneset libraries names and connects to Enrichr api and returns enriched terms the geneset library name from Enrichr and userListId (id created by enrichr api) sand retruns tidy dataframe of all geneset terms in that library
krsa_enrichr( peptides = NULL, genes = NULL, libs = c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021", "WikiPathway_2021_Human", "Reactome_2016", "KEGG_2021_Human", "BioPlanet_2019") )
krsa_enrichr( peptides = NULL, genes = NULL, libs = c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021", "WikiPathway_2021_Human", "Reactome_2016", "KEGG_2021_Human", "BioPlanet_2019") )
peptides |
a vector of PamChip peptide IDs |
genes |
(optional) a vector of HGNC symbols. This will override the list of peptides |
libs |
geneset libraries names from Enrichr. default: c("GO_Biological_Process_2021", "GO_Cellular_Component_2021","GO_Molecular_Function_2021", "WikiPathway_2021_Human","Reactome_2016", "KEGG_2021_Human", "BioPlanet_2019") |
df tidy dataframe of all geneset terms in that library
Other helper functions:
enrichr_lib_call()
,
krsa_ce_output_kinases()
,
krsa_ce_output_peptides()
,
krsa_extractEndPoint()
,
krsa_extractEndPointMaxExp()
,
krsa_get_diff()
,
krsa_get_diff_byChip()
,
krsa_sampling()
,
krsa_show_peptides()
,
krsa_top_hits()
TRUE
TRUE
This function takes in the Enrichr dataframe and plot the results
krsa_enrichr_plot(enrichr_df, terms_to_plot = 10, size = 2.5)
krsa_enrichr_plot(enrichr_df, terms_to_plot = 10, size = 2.5)
enrichr_df |
the Enrichr dataframe generated from the |
terms_to_plot |
number of terms to plot per library. default is 10 |
size |
size of label text. default is 2.5 |
ggplot
TRUE
TRUE
This function takes in raw data and chip type and returns end point data (last cycle)
krsa_extractEndPoint(df, type = c("STK", "PTK"))
krsa_extractEndPoint(df, type = c("STK", "PTK"))
df |
krsa raw tidy data |
type |
chip type |
end point signals df
Other helper functions:
enrichr_lib_call()
,
krsa_ce_output_kinases()
,
krsa_ce_output_peptides()
,
krsa_enrichr()
,
krsa_extractEndPointMaxExp()
,
krsa_get_diff()
,
krsa_get_diff_byChip()
,
krsa_sampling()
,
krsa_show_peptides()
,
krsa_top_hits()
TRUE
TRUE
This function takes in raw data and chip type and returns end point data at max exposure (last cycle)
krsa_extractEndPointMaxExp(df, type = c("STK", "PTK"))
krsa_extractEndPointMaxExp(df, type = c("STK", "PTK"))
df |
krsa raw tidy data |
type |
chip type |
end point data at max exposure df
Other helper functions:
enrichr_lib_call()
,
krsa_ce_output_kinases()
,
krsa_ce_output_peptides()
,
krsa_enrichr()
,
krsa_extractEndPoint()
,
krsa_get_diff()
,
krsa_get_diff_byChip()
,
krsa_sampling()
,
krsa_show_peptides()
,
krsa_top_hits()
TRUE
TRUE
This function takes in the pw data (max exposure), signal threshold, and samples and group names (optional)
krsa_filter_lowPeps(data, threshold, samples = NULL, groups = NULL)
krsa_filter_lowPeps(data, threshold, samples = NULL, groups = NULL)
data |
krsa pw data (max exposure) |
threshold |
signal threshold |
samples |
(optional) sample names |
groups |
(optional) group names |
vector
Other QC functions:
krsa_filter_nonLinear()
,
krsa_filter_ref_pep()
,
krsa_qc_steps()
TRUE
TRUE
This function takes in the pw data, r2 threshold, and samples and group names (optional)
krsa_filter_nonLinear(data, threshold, samples = NULL, groups = NULL)
krsa_filter_nonLinear(data, threshold, samples = NULL, groups = NULL)
data |
krsa modeled pw data (scaled) |
threshold |
r2 threshold |
samples |
(optional) sample names |
groups |
(optional) group names |
vector
Other QC functions:
krsa_filter_lowPeps()
,
krsa_filter_ref_pep()
,
krsa_qc_steps()
TRUE
TRUE
This function takes in a list of peptides and filter out the ref peptides
krsa_filter_ref_pep(peptides)
krsa_filter_ref_pep(peptides)
peptides |
list of peptides |
vector of peptides
Other QC functions:
krsa_filter_lowPeps()
,
krsa_filter_nonLinear()
,
krsa_qc_steps()
TRUE
TRUE
This function takes in the LFC table, column name, and an LFC cutoff to extracts differentially phosphorylated peptides
krsa_get_diff(data, col, lfc_thr, sd_thr = Inf)
krsa_get_diff(data, col, lfc_thr, sd_thr = Inf)
data |
LFC table |
col |
LFC column name |
lfc_thr |
LFC cutoffs |
sd_thr |
SD cutoff |
peptides
Other helper functions:
enrichr_lib_call()
,
krsa_ce_output_kinases()
,
krsa_ce_output_peptides()
,
krsa_enrichr()
,
krsa_extractEndPoint()
,
krsa_extractEndPointMaxExp()
,
krsa_get_diff_byChip()
,
krsa_sampling()
,
krsa_show_peptides()
,
krsa_top_hits()
TRUE
TRUE
This function takes in the LFC table, column name, and an LFC cutoff to extracts differentially phosphorylated peptides per chip/barcode
krsa_get_diff_byChip(data, col, lfc_thr)
krsa_get_diff_byChip(data, col, lfc_thr)
data |
LFC table |
col |
LFC column name |
lfc_thr |
LFC cutoffs |
peptides
Other helper functions:
enrichr_lib_call()
,
krsa_ce_output_kinases()
,
krsa_ce_output_peptides()
,
krsa_enrichr()
,
krsa_extractEndPoint()
,
krsa_extractEndPointMaxExp()
,
krsa_get_diff()
,
krsa_sampling()
,
krsa_show_peptides()
,
krsa_top_hits()
TRUE
TRUE
This function takes in the modeled pw data, groups, peptides, and an option to perform the calculation per chip (byChip)
krsa_group_diff( data, groups, peps, samples = NULL, byChip = T, Barcodes = NULL )
krsa_group_diff( data, groups, peps, samples = NULL, byChip = T, Barcodes = NULL )
data |
modeled pw data |
groups |
a vector. format: (case, control) |
peps |
peptide list |
samples |
sample names |
byChip |
T or F, to calculate per chip |
Barcodes |
(optional) Barcodes vector |
LFC krsa table
Other core functions:
krsa()
,
krsa_quick_filter()
,
krsa_read()
,
krsa_scaleModel()
TRUE
TRUE
This function takes in the modeled pw data, peptides and produces and pheatmap
krsa_heatmap(data, peptides, samples = NULL, groups = NULL, ...)
krsa_heatmap(data, peptides, samples = NULL, groups = NULL, ...)
data |
modeled pw data |
peptides |
peptide list |
samples |
(optional) sample names |
groups |
(optional) group names |
... |
to pass to the pheatmap function |
pheatmap object
Other plots:
krsa_ball_model()
,
krsa_coverage_plot()
,
krsa_curve_plot()
,
krsa_cv_plot()
,
krsa_heatmap_grouped()
,
krsa_histogram_plot()
,
krsa_reverse_krsa_plot()
,
krsa_violin_plot()
,
krsa_violin_plot_grouped()
,
krsa_waterfall()
,
krsa_zscores_plot()
TRUE
TRUE
This function takes in the grouped modeled pw data, peptides and produces a pheatmap object
krsa_heatmap_grouped(data, peptides, groups = NULL, ...)
krsa_heatmap_grouped(data, peptides, groups = NULL, ...)
data |
grouped modeled pw data |
peptides |
peptide list |
groups |
(optional) group names |
... |
arguments passed to pheatmap() |
pheatmap object
Other plots:
krsa_ball_model()
,
krsa_coverage_plot()
,
krsa_curve_plot()
,
krsa_cv_plot()
,
krsa_heatmap()
,
krsa_histogram_plot()
,
krsa_reverse_krsa_plot()
,
krsa_violin_plot()
,
krsa_violin_plot_grouped()
,
krsa_waterfall()
,
krsa_zscores_plot()
TRUE
TRUE
This function takes in Z score table, and count matrix (an output from krsa()) and generates distribution histograms for a list of kinases
krsa_histogram_plot(data, data2, kinases)
krsa_histogram_plot(data, data2, kinases)
data |
Z score table from krsa() |
data2 |
count matrix from krsa() |
kinases |
a vector of kinases |
ggplot object
Other plots:
krsa_ball_model()
,
krsa_coverage_plot()
,
krsa_curve_plot()
,
krsa_cv_plot()
,
krsa_heatmap()
,
krsa_heatmap_grouped()
,
krsa_reverse_krsa_plot()
,
krsa_violin_plot()
,
krsa_violin_plot_grouped()
,
krsa_waterfall()
,
krsa_zscores_plot()
TRUE
TRUE
A data frame of the built-in KRSA kinase-substrate mapping file for PamChip 86402 PTK (v1 mapping)
data("KRSA_Mapping_PTK_PamChip_86402_v1")
data("KRSA_Mapping_PTK_PamChip_86402_v1")
A data frame with 192 rows and 2 variables:
Peptide IDs
mapped kinases separated by spaces
A data frame of the built-in KRSA kinase-substrate mapping file for PamChip 87102 STK (v1 mapping)
data("KRSA_Mapping_STK_PamChip_87102_v1")
data("KRSA_Mapping_STK_PamChip_87102_v1")
A data frame with 141 rows and 2 variables:
Peptide IDs
mapped kinases separated by spaces
This function takes in the raw data and QC pre-processes it (deals with negative values, and adjust signal saturation values)
krsa_qc_steps(df, sat_qc = T)
krsa_qc_steps(df, sat_qc = T)
df |
krsa raw data |
sat_qc |
to filter out data point with high SignalSaturation |
df
Other QC functions:
krsa_filter_lowPeps()
,
krsa_filter_nonLinear()
,
krsa_filter_ref_pep()
TRUE
TRUE
This function takes in pw data max exposure, modeled pw data, signal threshold, R2 threshold, and samples and groups names (optional) and returns peptides that passed these conditions
krsa_quick_filter( data, data2, signal_threshold, r2_threshold, samples = NULL, groups = NULL )
krsa_quick_filter( data, data2, signal_threshold, r2_threshold, samples = NULL, groups = NULL )
data |
pw data max exposure |
data2 |
modeled pw data |
signal_threshold |
signal threshold |
r2_threshold |
R2 threshold |
samples |
sample names |
groups |
group names |
vector of peptides
Other core functions:
krsa()
,
krsa_group_diff()
,
krsa_read()
,
krsa_scaleModel()
TRUE
TRUE
This function takes in paths to the median signal minus background (Median_SigmBg) and signal saturation (Signal_Saturation) files and parse and tidy them
krsa_read(signal_file, signal_saturation)
krsa_read(signal_file, signal_saturation)
signal_file |
path to median signal minus background file (Median_SigmBg) |
signal_saturation |
path to signal saturation file (Signal_Saturation) |
tbl_df
Other core functions:
krsa()
,
krsa_group_diff()
,
krsa_quick_filter()
,
krsa_scaleModel()
TRUE
TRUE
This function takes in chipCov df, the LFC table, kinases, LFC threshold, and generates the reverse krsa plot (to examine kinase activity)
krsa_reverse_krsa_plot( chipCov, lfc_table, kinases, lfc_thr, byChip = T, facet = F )
krsa_reverse_krsa_plot( chipCov, lfc_table, kinases, lfc_thr, byChip = T, facet = F )
chipCov |
chipCov df for eaither STK or PTK |
lfc_table |
the LFC table |
kinases |
vector of kinases |
lfc_thr |
LFC threshold |
byChip |
will facet by Barcode |
facet |
facet by chip |
ggplot object
Other plots:
krsa_ball_model()
,
krsa_coverage_plot()
,
krsa_curve_plot()
,
krsa_cv_plot()
,
krsa_heatmap()
,
krsa_heatmap_grouped()
,
krsa_histogram_plot()
,
krsa_violin_plot()
,
krsa_violin_plot_grouped()
,
krsa_waterfall()
,
krsa_zscores_plot()
TRUE
TRUE
This function takes number of iterations, coverage file, kinase-substrate mapping df, and the length of the set of peptides to resample
krsa_sampling(x, CovFile, map, sum_num)
krsa_sampling(x, CovFile, map, sum_num)
x |
number of iterations |
CovFile |
kinase coverage df |
map |
kinase-substrate mapping df |
sum_num |
number of peptides to resample |
count of kinases hits to random peptides
Other helper functions:
enrichr_lib_call()
,
krsa_ce_output_kinases()
,
krsa_ce_output_peptides()
,
krsa_enrichr()
,
krsa_extractEndPoint()
,
krsa_extractEndPointMaxExp()
,
krsa_get_diff()
,
krsa_get_diff_byChip()
,
krsa_show_peptides()
,
krsa_top_hits()
TRUE
TRUE
Runs a linear model on the tidy kinome array data of the signal as a function of exposure time. It also scales, transforms, and normalize kinome array data based on the barcode
krsa_scaleModel(df, pep, nobs_filter = 0)
krsa_scaleModel(df, pep, nobs_filter = 0)
df |
kinome array data tidy data |
pep |
Peptide List |
nobs_filter |
min number of data points to fit linear model |
list of scaled , normalized and grouped modeled data
Other core functions:
krsa()
,
krsa_group_diff()
,
krsa_quick_filter()
,
krsa_read()
TRUE
TRUE
Takes in list of significant peptides and calculates length of each set
krsa_show_peptides(sigPeps_list)
krsa_show_peptides(sigPeps_list)
sigPeps_list |
list of significant peptides |
tibble with length of peptide sets
Other helper functions:
enrichr_lib_call()
,
krsa_ce_output_kinases()
,
krsa_ce_output_peptides()
,
krsa_enrichr()
,
krsa_extractEndPoint()
,
krsa_extractEndPointMaxExp()
,
krsa_get_diff()
,
krsa_get_diff_byChip()
,
krsa_sampling()
,
krsa_top_hits()
TRUE
TRUE
Take in Z score table and extract top kinases based on a Z score cutoff
krsa_top_hits(zTable, z_thr)
krsa_top_hits(zTable, z_thr)
zTable |
Z score table from krsa() |
z_thr |
Z score cutoff |
vector of top kinases
Other helper functions:
enrichr_lib_call()
,
krsa_ce_output_kinases()
,
krsa_ce_output_peptides()
,
krsa_enrichr()
,
krsa_extractEndPoint()
,
krsa_extractEndPointMaxExp()
,
krsa_get_diff()
,
krsa_get_diff_byChip()
,
krsa_sampling()
,
krsa_show_peptides()
TRUE
TRUE
Takes in the scaled dataset from krsa_scaleModel() and plot violin figures using ggplot2
krsa_violin_plot( data, peptides, facet_factor, facet = T, samples = NULL, groups = NULL, show_legend = F )
krsa_violin_plot( data, peptides, facet_factor, facet = T, samples = NULL, groups = NULL, show_legend = F )
data |
the scaled dataset from krsa_scaleModel |
peptides |
vector of peptides |
facet_factor |
Column used to facet by. Will be used in facet_wrap(). Needs argument facet to be True. |
facet |
boolean to facet the plot by a variable |
samples |
(optional) a vector of sample names |
groups |
(optional) a vector of group names |
show_legend |
to show legend (default = FALSE) |
ggplot figure
Other plots:
krsa_ball_model()
,
krsa_coverage_plot()
,
krsa_curve_plot()
,
krsa_cv_plot()
,
krsa_heatmap()
,
krsa_heatmap_grouped()
,
krsa_histogram_plot()
,
krsa_reverse_krsa_plot()
,
krsa_violin_plot_grouped()
,
krsa_waterfall()
,
krsa_zscores_plot()
TRUE
TRUE
Takes in the scaled dataset from krsa_scaleModel() and plot violin figures using ggplot2
krsa_violin_plot_grouped( data, peptides, grp_comp = NULL, groups = NULL, test = F, test_method = "wilcox.test", violin = TRUE, dots = FALSE, lines = FALSE, avg_line = T, ... )
krsa_violin_plot_grouped( data, peptides, grp_comp = NULL, groups = NULL, test = F, test_method = "wilcox.test", violin = TRUE, dots = FALSE, lines = FALSE, avg_line = T, ... )
data |
the scaled dataset from krsa_scaleModel |
peptides |
vector of peptides |
grp_comp |
list of group comparison names |
groups |
(optional) a vector of group names |
test |
perform two group test |
test_method |
type of test (default is wilcox.test) |
violin |
add violin layer |
dots |
add dotplot layer |
lines |
add lines layer |
avg_line |
draw averaged line across the two groups |
... |
arguments passed to ggsignif |
ggplot figure
Other plots:
krsa_ball_model()
,
krsa_coverage_plot()
,
krsa_curve_plot()
,
krsa_cv_plot()
,
krsa_heatmap()
,
krsa_heatmap_grouped()
,
krsa_histogram_plot()
,
krsa_reverse_krsa_plot()
,
krsa_violin_plot()
,
krsa_waterfall()
,
krsa_zscores_plot()
TRUE
TRUE
Takes in the LFC table and a LFC cuttoff and generates a waterfall plot using a ggplot.
krsa_waterfall(data, lfc_thr, byChip = T, sd_thr = Inf)
krsa_waterfall(data, lfc_thr, byChip = T, sd_thr = Inf)
data |
LFC table |
lfc_thr |
LFC cutoff for plot |
byChip |
boolean Select T if the LFC is based on a byChip analysis |
sd_thr |
SD cutoff for plot |
ggplot object
Other plots:
krsa_ball_model()
,
krsa_coverage_plot()
,
krsa_curve_plot()
,
krsa_cv_plot()
,
krsa_heatmap()
,
krsa_heatmap_grouped()
,
krsa_histogram_plot()
,
krsa_reverse_krsa_plot()
,
krsa_violin_plot()
,
krsa_violin_plot_grouped()
,
krsa_zscores_plot()
TRUE
TRUE
Takes in the Z score table and generates a waterfall plot using a ggplot.
krsa_zscores_plot(Ztable)
krsa_zscores_plot(Ztable)
Ztable |
Z score table |
ggplot object
Other plots:
krsa_ball_model()
,
krsa_coverage_plot()
,
krsa_curve_plot()
,
krsa_cv_plot()
,
krsa_heatmap()
,
krsa_heatmap_grouped()
,
krsa_histogram_plot()
,
krsa_reverse_krsa_plot()
,
krsa_violin_plot()
,
krsa_violin_plot_grouped()
,
krsa_waterfall()
TRUE
TRUE
Main function that parses bionavigator crosstab view files. Takes in path to file and type (either Signal or SignalSaturation)
parse_BN_crosstabFile(file_path, type = c("Signal", "SignalSaturation"))
parse_BN_crosstabFile(file_path, type = c("Signal", "SignalSaturation"))
file_path |
path to BN crosstab file |
type |
Name of the value (either Signal or SignalSaturation) |
tbl_df
TRUE
TRUE
A data frame of CDRL Complete mapping CDRL Complete mapping of peptides to HGNC symbols (PTK PamChip 86402)
data("ptk_pamchip_86402_mapping")
data("ptk_pamchip_86402_mapping")
A data frame with 193 rows and 2 variables:
A data frame of CDRL Complete mapping CDRL Complete mapping of peptides to HGNC symbols (STK PamChip 87102)
data("stk_pamchip_87102_mapping")
data("stk_pamchip_87102_mapping")
A data frame with 141 rows and 2 variables: